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q, Abst,',
Let M be a two-parameter continuous martingale bounded in L 2 and null on the axes. The positive

submartingale M 2 has the following Doob-Meyer decomposition

M -21 M3 dMz+2 tM3 4 .>,, <M .,>s-[M 1s,
RX

(cf. (2], (3], (8]), where Rt denotes the rectangle [0,s ]x[0,t]; <M,.>, (resp. <M.t >,) is the qua.

dratic variation of the one-parameter martingale (Mg, t O} (resp. {Mg, s -0), and M is a martingale

obtained in the following way: For each z e R 2 , consider an increasing sequence of grids, (p', n -1),

of T=Rz whose mesh tends to zero. then Mz is the L 1-limit of the sequence

(n )[M (si +,tj )-M (s ,tj )][M (si ,tj+I)-M (si ,tj )1

The purpose of this paper is to relate the measures induced by the quadratic variations

[mist , [,M]s , <Ms.>t and <M., >s, in terms of the "absolute continuity" property. Since we are

dealing with random measures, different definitions are possible:
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1. Introduction

Let M be a two-parameter continuous martingale bounded in L and null on the axes. The positive

submaringale M has ftiefowing Doob-Meyer decomposition

M2 = 2fMzdMz+ 5 s+<M 3.>,+<M.i>s-[,Mst.R,

(cf. [2], [3], (8]), where R,, denotes teiangle [0,sJX[0,t]; <Ms.> t (resp. <M. t >s) is the qua-

dratic variation of the one-pameter martingale (Ms,. t20) (resp. (M,, s 0). and Mis a martingale

obtained in the following way: For each z e R, consider an increasing sequence of grids, {pn, n 1,

of T =R, whose mesh tends to zero, then M. is the L 1-limit of the sequence

I ~~~-n )[M (si +l,ty )-M (si ,tj )][M (si ,tj +)-g (si ,tj )]

The purpose of this paper is to relate the measures induced by -the quadratic vai

[M]st , [Mf]st , <Ms.> t and <M.t >s, in terms of the "absolute continuity'property. Since we are

dealing with random measures, different definitions are possible: . (-f--) ,-" -- i, j" "

Definition 1.1. Given two random finite measures g,V defined on some measurable space (S , g), p± is said

to be absolutely continuous with respect to V, a.s. (and we will write g<<V, a.s.) if, for any

w W, P (N)=0, the following property holds:

If A e is such that V(w )(A )--0, then also g(w)(A )=0.

Definition 1.2. Let g and V be as in the preceding definition. . is said to be weakly absolutely continuous

with respect to V if, for any A E I , P { w, v(w )(A )=0, .(w )(A )*0})=0.

Comparing these two definitions, we easily realize that the first one requires a stronger property, but

it seems to be the more "natural" in view of applications, and will be mainly considered along the paper.

The contents of the paper are roughly as follows. Section 2 is devoted to preliminaries on two-

parameter processes. In particular we introduce the measure [M ] [M I which gives an exact meaning to

the expression J [M la,d[M Id , (this turns out to be a special case of generalized exterior products

introduced by Wong and Zakai in (14]). The measure [MI1] can also be viewed as an exterior product of

this type and a probabilistic proof of this fact is given in Proposition 2.3. Section 3 relates the measures
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induced by M on vertical or horizontal lines. It is shown that in general [M ]db -' <M .t >d,. We

have not been able to prove that in general [M ]st >> <M.t >d,; we believe it is true and give partial

results in this direction. In section 4 we compare the random measures [M],[MA and [MI * [M]. It is

pointed out that in general [M ] -* [A, [M ] - [MI * [M ], [MA -* [M ]. Absolute continuity results

are derived in this section under additional conditions. We do not know if [A << [M * [M ] holds in

general, we conjecture that it holds and derive partial results in this direction.

In section 5 we apply the results of the previous section to the problem of local time for two parame-

ter martingales. In fact, one of the motivations of our problem has been the study of local time for two-

parameter continuous martingales. In the one-parameter case the local time of martingales, L (x ,t), (and

more general, for semimartingales X) is defined by an extended version of Ito's formula for convex func-

tions. It is a local time with respect to the quadratic variation <X >, in the sense that, for every

f : R-R bounded and Borel it satisfies the "density of occupation" formula

I

ff (x)L(x,t)dx = ff (X,)d<X>, . a.s.
R o

In the two-parameter case this method leads to a local time with respect to [A (see [9]). The result

seems to be rather surprising, since in comparison with the one-parameter case we expect that the measure

[M ] should play a role. It follows from the results of the previous sections that [M I alone or [A] alone

are not sufficient to carry the local time and, therefore, a measure like [M ]+[A/] may be more suitable for

this purpose.

2. Preliminaries and Notation.

The parameter space is T-[O,1] 2 endowed with the partial ordering (S 1,tl)<(S2,t2) if and only if

S 15S2 , t15t2 ; (S1, )<(S2, 2) means s I<s2 and tI<t 2. Iff is a map from T to R, the increment

of f on a rectangle (z1,z21 = zeT, ZI<Z5z2 ), zI=(s,t 1 ), z 2=(s 2,J2 ) is

f ((Z 14z 2]) = f (Z 2)-f (S 1,1t2)-f (S$24,t f (z 0).

Let p be a grid of T given by

po(Si,tj)T, i=0 .... p, j=O(.p q, Oso<Sl< <sp<, OtO<tl< .. <tqd<len.

For any (si ,tj )e p we define
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Aij=(sj'i'1X, 1j') '=(si'si+1]×(O'tj1 ], =(0,si ]×(t'j:

with the convention $p+t = tq+1 = 1.

Let (Q,F,P) be a complete probability space, and (Fz)zsT an increasing family of sub a-fields

of F satisfying the usual conditions (FI) to (14) of (2]. We recall that if M=(M, zeT) is a real

valued integrable and Fz -adapted process, M is a martingale if for any z <z", E [Mz, I Fr ]=M, . M is

a strong martingale if M vanishes on the axes, and E{M((z,z1F)isVFlt)=O, for each

z<z', z=(s,t).

Let m,' be the class of two-parameter continuous martingales bounded in LP and null on the axes.

Denote by M., and M s.the one-parameter martingales {Mst, Fsi, s >0O} and (Mt, Fit, t->0)

respectively. If ME m,2 , M is said to be of path independent variation if

<M.t >S = <M. >t = [MJM (cf. (2], (13]). Here, and throughout the paper, <X> will denote the

quadratic variation of a one-parameter martingale X, while [y ] will refer to the quadratic variation of a

two-parameter martingale y.

The class of strong martingales on mc2 is strictly included in the class of path independent variation

martingales (see [7]).

All constants will be denoted by C, although they may change from one expression to another.

In order to state the results of this section we consider an increasing sequence of grids { p', n ;1)

of T whose norm tends to zero, and for any z E T we define

I',= ((ij)EN 2 I (s,t).pn , (Si,tj)<z}.

Lemma 2.1.- Let F: R+--+R be a continuous distribution function. Then Urn F (Ai)F (A2 )
n"'*( i.j )e Im

exists and defines a continuous and increasing function F F (see Lemma 2.6 of [9]).

Proof. Consider the following decomposition:
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[F (z)12 = F(A 2

= 2[F (si ,tj )F (Aij)+F (Aij)F (A AA) ) )+F( )F(A- + F(A )21
(i j )e 

11J

Let n ) a*, then by the continuity of F we obtain

, F(Aij)F(AA) s.up(F(si+4 ,t)-F(si,t))F(z) -* 0
(ij )E1- 1 n

and analogously I F (Aij)F (A0) . 0.
(i ,j)e

On the other hand I F (Aij )2 s.up F (Aij)F (z) -0. Therefore,
(i'j )G l t 'j n--*"

lim I F(A 1 .)F(Ai)=- F (z )2o)

n -""(ij )e I:1 i R,

This limit defines a continuous function F * F. It is obvious that for any rectangle A with sides

parallel to the axes. (F * F )(A)>O. 11

If F and G are two continuous distribution functions on R 2 , F * G can be defined by polariza-

tion.

Given M m 2 , there exist a continuous and increasing process {[M ], z e T ) such that

limsLupE{ I M (Aij) 2-[MI] I =0
n 4* 2 (ij)G1.

(See [2], [8]). Therefore, by Lemma 2.1 we can associate to M a continuous measure [M] * [MI. In

Section 4 we will compare this measure with the quadratic variations associated with M.

Lemma 2.2. Let {MIt; Ft, i=0, . . . ,m, te [0,1]) be a collection of one parameter martingales,

bounded in LP , for some p 2, such that MP=o, for any i=0,.. . , m. Suppose that t --+M1 is a.s. con-

tinuous for every i =0, . . . , m. Then there exists a constant C. such tha,

i E sup I MiI 5;CPE I 1MA)2 p

i o 0551 2 i=o

Furthermore if Mj is a martingale sequence in i then E I (Mil) 2  < CP E I J'Mit 1p .
j -o i=O io
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Proof. Let (A,, t e [0,1]) be the continuous, increasing and Ft -adapted process defined by
m

At,= sup IMi 2 .i i---0O!0S'Mt

The potential Z t associated with At is computed as follows:

Zt =E[A1-At IF t]

- '[si4p IMi I2- sup IM~il 2 /Ft
Li--o o l o~t 1(1)m

5E[ Y, sup IM i F2 /t]
i=O tS<-I

By Doob's maximal inequality applied to the martingales [(ML'r).lF, F'r, te[t,1]},
m

FC F', i=0 ..0 . m,(1) is bounded by m,=Cp E[ I Mi1 12 / F t ] , where im t ; F', tC[0,1]}
i=O

is a martingale. By Garsia-Neveu's inequality

E(A )pY2 _Cp E (m )P/2=CpE [ I Mi 1 12 p 2  (2)
i=O

which is the first result of the lemma. Burkholder's inequality applied to the one-parameter discrete mar-

tingale ,Mj1, yields the second part of the lemma.
j=1 [

Note that the frst part of this lemma is a slight generalization of the Doob maximal inequality for one-

parameter vector valued martingales.

Propositon 2.3. Let M r m. The following convergence holds:

lime {I Y,. [M(Ai})2M(AiA)2-(<M,..> , <M.>t )(<M.tj>s.+-<M.t>,)]}

= 0. for any zE T.

Proof. To simplify the notations we take z (I,1). Let

mren, p"=((sitj)e:T, i=O .... p P, j--O ..... q) ), pm=((O.i,,j,)ET, i'0, p,,, j'--0. q,.

For every i=0, .. p, (resp. j=O,... ,q,) define I=(i',ie[Si ,Si+)) (resp.

J,=(j', j <-[tj,tj ,)}). Given points u'=(i,,tj), u"=(i,Tj') we denote by

Ajj=( i ,,O'i,,]x(O,tj 1, and A I.,=(O,si ]x( 'j,,Tj,,. Then
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7 I[M (A )2M (AA) 2- lim ( j i }(3
ij M j'e i Vi'(3)

5 sup E{ 11[( 1: M (A M (A~ 2)
m~n £.J L'Ij ,j~j JlJ Jj 'EJ,

For any CEIi '6El i ,71>Si,y>tj we define Zj= (sj, ,]X(O, and

ijj,= (O,sj IX(tj, ,'rj,. Using this notation we obtain that the last term in (3) is bounded by

C sup (an +b,,n +c,,,), where

m

ab, =E[Ij I (&,2 (& M

'.j iCe!, j'eJj

We next show that each one of these termis tends to zero when n )~ uniforrnlyin m.

(i) By Davis inequality we obtain

a_ < C E[ M (A ' M(AW(
J~J'eJi t;&'e Ii

J ;j, a

~~CE( sup ~ IM 1M 1 I u (~)) u

z1-zaIslp 4 I i2aeI i j j'J

!5 C (E [sup M ~ (A I )2)2 I)"12

i iijl

where I pM I denotes the norm of p',. i.e.ip I p' max( I (si,tj)-(Si+,+j, 1 ,

By Doob's inequality applied to the positive submnartingale

M M(A5lj)2, Fl,,), . .0 , q,, the first factor of (4) is bounded by

C E( (M (ay ,I,1)_M(Cyi,1,))1) 2. and by Burkholder's inequality this is majorized by
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C E (M 4). The second factor of (4) tends to zero as n - co, by the continuity of M. Finally,

E [( supM(A o)2 )2 ]<-E[( sup Ig(s,,rj,+l)-g(s j,) 2)2]
j;j'Ej i j~jeJ O'sr1

C E(M4)

where the last bound is given by Lemma 2.2.

For bnm we can use the same arguments as before; we now analyze the last term.

(ii) By Ledoux' version of Davis inequality for two-parameter discrete martingales (see [6]) we obtain

C n < C E[ M(Ai' MA)2 ( ) M(A'j) 2 M  2 2]1/2

i~j ijli j'eJI= CE [( M Ait j)2M (Aii- ,j)2)( I Mf (Ai2 ,)2M (;21 ,)2)] 1,2
i~j i" lj j'4E.Jj

<C ~ ~ ~ ~ M E( sp I ,-z12)21( 1 M (A _j)2) ,(A )2)) 1/2

Izl-z21<l1p' I i~j i'Eli J'EJj

<C E[ sup IgzL-Mz1 4(ysup y M(A I )2)sup y M(Aj,) 2 112

IZ-Zl21 IP' I L i i'. 1 j,j,E ji

<C [E[ sup IM -M 141) 1/2

IzI-z21!5Ip I

E[Ysup I M(Ajj) 2 12)1 /4.{E[sup I I M(Ai,)2)2]} 1/4

i J ie 1, , j,j'EJ i

< C (E[ sup IMZ 1-Mz 4]}Z 2 {E(M 1 ))1/2
1zj-Z2i_<lp' t

where the last bound is obtained, as in (i), by Lemma 2.2, and Doob's and Burkholder inequalities.

In [9] it is shown that the quadratic variation of the martingale M can be obtained as the L 1-limit of

the sums

S M(A .)2M(Ai )2 .

(i j )eI,"

Our Proposition 2.3 provides another way of looking at the measure [MI] and shows that, if M is of path

independent variation then [M] = [M * [M].

Using the notation of Lemma 2.1. [Mf] = <M .>y * <M.Y >X. The martingale property and the

techniques of martingale theory have played a basic role. Notice that it is not clear from the point of view

of real analysis if < *.>y <M.Y >X exists, and defines a measure.
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We end this Section by giving some examples. The aim is to suggest what kind of relations of abso-

lute continuity may be expected for the different quadratic variations associated with a two-parameter con-

tinuous martingale M r m 4 .

Example 2.1. Fix 0<z 1<z 2<(s ,t), and consider the strong martingale

M. = f l(z,c(Z )dwz
R.,

where [w,, zER 2) isa Brownian sheet. We obviously have [M]([zj,z2])--0. On the other hand, for

a strong martingale Mst = f O(z )dwz we obtain
R,,

[ils = f ( I O(u ,r)20(a,v)2 d adr)dud v
Rs, R.,

It follows that, if z 1=(x 1,Y 1), z2 =(X2,Y2) and0=-1 [ZZ 23,,

x 1 Yz

[I]([zl,z2])= f YYix 1dudv=y1x 1 (x 2-x)(Y2 -Y)•
Xf YZ

Consequently [M] is not absolutely continuous with respect to [M].

Example 2.2. Let { m., u e [0,11 ) be a continuous martingale, bounded in L 4 , m o =), with respect to

some filtration {GU, Ue[0,11 that satisfies the usual conditions. For each (s,t)eT, define

Mst =msat and Fst =GsAt. It is easy to check that ( Fsj, (S ,t )e T ) is an increasing family of Oa-fields

satisfying properties (FI) to (F4) of (2], and {Mst ; Fst, (S,t)e T) is a continuous two-parameter

strong martingale.

Moreover, M- and consequently [A-0. However M 0e0 and the quadratic variation [MI is a

continuous measure which exists in the diagonal of T. In fact, let A1, i ,j--O . p.. , , be the dyadic
partition ofT, A! (s! sJ ]Ij-C ,I +l1Xt"tn1

[M],t = L' - lir I M(A!'
n i~j

=L _im I M(A!!) 2 = L 1 - lim ,(ms 1 - m?)2 = <m >I
n i=j n
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This last example shows that [M ] is not absolutely continuous with respect to [MI] and neither with

respect to [M I * CM ]. The fact that the support of [M ] is a set of planar Lebesgue measure zero seems

to be the reason for this unexpected result. However we will see in Section 4 that [M * [M ] dominates

(M I if the support of the latter measure is not "highly concentrated".

3. One-Dimensional Results

In this Section we consider the measures induced by <Ms. > (resp. <M., >, ) and [Ms t on verti-

cal (resp. horizontal) lines.

The relation [M] sdt « << ms.>dl, a.s. does not hold. In fact, consider the process defined by

B, =Bs2B t , where (B, 1, sE [0, 11 and {Bt 2, te [0,1]} are two independent Brownian motions.
1 1 1<S<s}0.DfnaLet Sinf{s > -, B_'--O[S is astopping time, and for any s > -- P {- >. eie

2 2 2
two-parameter continuous martingale by Mst =Bsl "Bt2. Then:

<ms.>dl = (B t)2 sdt, [M Isdi = <B 1t>s M t

Therefore, for any fixed S > I and for any Ae B(R.), iA 1 #0, f<Ms.>dt=O and f[mlsdt#O,
2 A A

with positive probability.

The following lemma is an extension of a well known result in martingale theory (cf. [5]).

Lemma 3.1. Let M - m 2 . M and [M ] have the same rectangles of constancy, almost surely.

Proof. It is very similar as in the one-parameter case. For the sake of completeness we will give the

details.

Since M is continuous it is enough to prove that for any fixed z 1 
< z 2, a.s.,

fw, M(w)(A) = 0, for any rectangle A c [z 1 ,z2])

= (w, [M ](w)(A) = 0, for any rectangle A c [z 1 ,z 2 }.

One inclusion is trivial. In fact, if M (A)--0 for every A C [z 1 ,Z 21, then

[M I([z 1,z 2 1) = lim IM (Aij )2--0, where the sum extends over an increasing sequence of grids of
n

[z 1,Z 21 whose norm tends to zero, and the limit can be taken a.s.
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To obtain the other inclusion, define D = zz 1 , z eT, [M 1=[M],= . D is a predictable

stopping set, and for any z >z 1 we have

E( ID (a)dM ) E J D(a)dl M]a = 0
R, R,

Hence M (R, n D) =0, as., and this finishes the proof. E

An easy consequence of this lemma is the absolute continuity of <M, .> d with respect to [M ]at

on the algebra generated by intervals.

Proposition 3.2. For any interval I for which J[M ]st =0, it holds that f<Ms .>d t --0, a.s.
I I

Proof. Assume that this property does not hold. That means, for a set F cQ, with P (F) >0 it is possi-

ble to find intervals 1w, such that f [M sdt (w)0O, but f <Ms.>dt (w)*0. Lemma 3.1 shows that this
h, I.

is not possible. Indeed, (we omit the dependence on w).

0 = f[M st = [M ]([0,s 0 x, )

therefore M (A)--O, for any rectangle A c[O,slxI, in particular M (A)=O for any

A=[O,slx[r , t+i ],where {t, j=1, . . . ,q, ) isa partition of. Hence <M.>(I)--O. ]

We do not know if <Ms.>dl <<M s, a.s., in general. However we will see at the end of this

Section that it is possible to prove this property for some classes of martingales.

The next Proposition shows that <Ms .>dt is weakly absolute continuous with respect to [M ]sdt in

the sense given by Definition 1.2.

Proposition 3.3. For any s E [0,1 ] and f : [0,1 ] -R ! measurable and bounded function

1 1

P (f(t)<Ms.>d, *0, ff(t)[MlsM, = 0} 0 (5)
0 0
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Proof. Fix te [0,1]; the process {N=<Ms .>,-[M ]s, se [0,1]) is a continuous martingale, and its

quadratic variation satisfies

<Nt>s <5 [M Ost sup <MS,.> 1 .(6)

Indeed, Ns can be obtained as the L '-limit of a sequence IM (AI)M (Aij), where the sum is extended

to the points (S ,itj ) p', (si ,tj )<(S t). This gives the martingale property. In order to prove (6) we

use Lemma 2.1 of [10]. Let p =R' 1 xR 2 , where R' and R' are partitions of [0,11 determined by

0=so<s1< . <Sp. <I and 0=t, <t 1 < .. <tq <1, respectively, whose norms 'tend to zero as

n -4--. Then

<N'>s =P- lira n (j M(A, )M(A ))2

n" j

where the I (resp. ]) extends on indexes i (resp. j) such that Si <s (resp. t) <t ). Therefore
£ J

<N' >s P - lim j(ZM(Aij) 2)( M(Ai) 2 )< p _ lim ( M(Aij) 2)(Sup jM(A2 )2)n ) i j J n-- i I
< sup <Ms,.> 1 [M]st

From this result it easily follows that, if f: [0,1]-ilR+ is a step function, the process

1 1

{N f = Jf (:)<Ms.>dt - Jf (1)[M s e [0,11) is a continuous martingale, and
o 0

1

<Nf>s 5( (t) [M],) sup <Ms,> 1

1 1

Since { f (t)<Ms.>d, * O, Jf (t)[Mlt,=0) is included in the set (Ns*0, <N f >--0), the
0 0

property (5) holds if f is a step function.

Let f : [0,1]-4R, be a measurable, bounded function, and cons-der an increasing sequence of

positive step functions (fn) converging to f. Denote by A the set
1 1 1

{ f()<M >d*O, Yf(1)[Mlsdt-O}. On A, fYn(t0)Mhl=O0, for any n2!0, and consequently
0 0 0

ff, (t)<Ms >dt =0, for any n 0 a.s. Therefore P (A )=0.
0 E

Let us now consider two-parameter martingales with respect to the following filtrations:
1 

0 

0
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(a) {F, ze T) generated by a Brownian sheet {W, z eT)

(b) Fz , z T) a product filtration F =Fx VF, z(x,y), where {FX1, xe[0,1l) (resp.

(F 2, ye [0,1]) is generated by an n-dimensional (resp. m-dimensional) Brownian motion

(Bs=(Bs, . B..B7), s [o,1J) (resp. (B,=(B'....1, te[0,11), R i^?

These processes will be called Brownian and bi-Brownian martingales, respectively.

Given two random finite measures g and v on ([0,1], B([0,1])) we can define on

B([O,1]) 0 F two measures, 4and v, by

1 1
g(F) = E(flFdA), V-(F)=E(flFdv)

0 0
for any F e B ([0,1]) 0 F. Because of the right-continuity of the distribution functions of gL and V, the

property 4<<v, a.s., is equivalent to g << V on B ([OI]) 0 F.

Denote by r (resp. m2-) the class of two-parameter Brownian (resp. bi-Brownian) martingales,

null on the axes and bounded in L.

Proposition 3.4. The property <M,. >d t<< [M ]dt a.s. holds for martingales in the classes m2 and

2.MBB.

Proof. We first recall the representation theorems.

(i) Wong-Zakai representation ([13]). Every MEMni can be expressed as

Mst = f zdw, + ff W(z;z')dwzdw ,
R, R, xR.

where 0 is a measurable and adapted process such that E f 01dz <o, for any z + R . and IJ is
R,

a measurable and Fz vz - adapted process, null except on the set D = ((z ,z ')e R+, z =(x ,y),

z'=(x ',y '), x <x', y_>y'j, such that E ff 4(z ,z ')2dzdz "<o, for any zo E
RxR,.

(ii) Every M e m2B can be represented as

n m

Ms = 1 1: hi1(xy )dBdB,
i=l j=l

where hi are measurable and adapted processes such that E (f h2(x y )dxdy )<-o, for any

iiL
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zo E R (see [31).

Let M r=n . The quadratic variation of M is [M s, = f g (uv)dud v, with

g (UV) = 0 2(U,V) + f W2(x,v;u,y)dxdy

t

and <M,. >t = fh (s ,v)dv, where
0

S

h (s,v) = f(O(u ,v) + f W(u ,v;z ')dw,) 2du
0 Rol

1

Let F be a set of B([o,1]) 0 F such that E(f1F(wt)[MId)=); we have, using Fubini's
0

theorem,

f( (Jg (ur )du )dP )dt =0
OF, 0

where F, denotes the section of F through t. Therefore, for all t, a.e., such that P (F t )>0, w - a.s. on

Ft we have 0(u,t)=O and 4f(x,r;u,y )=0, for all u e [0,1], a.e. and for all (xy) Rut, a.e.

The conditions on AV can be expressed in an alternative way, using again Fubini's theorem: For all t,

a.e., such that P(Ft)>O, w - a.s. on Ft we have 4ij(Xt;u,y)=0, for all Xe [0,S] a.e. and for all

(u ,y )e [x ,s ]x[0,t J, a.e. Then,

1 S

fdp <M,.>d, = fdtf dp (f(t(u ,t) + f XV(ut;z')dw,') 2du)
F 0 F, 0 R.

I s St

= fdt fdP (f(O(u,r) + ffV(u ,t ;z ')dwz,) 2du
0 F, 0 uO
1 s St

- dtfdP (f((ut) + ,t;z')dw ,)2dx g
0 1, 0 X0

due to the local property of stochastic integrals.

The proof for M e mBj follows the same lines. If we restrict ourselves to the case n =m = 1 we

have
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$

[M]sat =(fh (u,t)2 du)dr
0

$

<Ms.>.* = (fh (u,t)d.) 2dt
0

The simple form of this measure makes computations easier than in the Brownian case.

4. Two-Dimensional Results

The main purpose of this Section is to analyze in what cases [M I is dominated by [Al]. Under some

hypotheses on [M I it is proved that the class of path independent variation martingales satisfy the property

[M]<< [1i', a.s. The measure [M] * [MI introduced in Section 2 plays an important role. In several

cases it dominates [M], but we do not know if they are equivalent.

In Section 2 we have given an example of strong martingale for which [M I is not absolutely con-

tinuous with respect to [Mi1 a.s. In this example [M I has a special feature: It lives on a subset of T of

zero planar Lebesgue measure. We conjecture that with some non-degeneracy hypothesis on [M ], it

should be absolutely continuous with respect to [f]. The next proposition is a partial result in this direc-

tion.

Proposition 4.1. Assume that [M I is absolutely continuous with respect to the product of its marginals,

a.s., then [M ] << [M ]* [M , a.s.

Proof. Denote by g.i, i =1,2 the marginals corresponding to the measure induced by [M ], and let f be a

version of d [MI . We have

V u

([MI * [M ])(z) = f (ff (u ,C)P2(d'))(kf (Y,v)glp(da))tl(du )P2(dv)
R, 0 0

Assume that ([M] [M ])(A )=, for some AE B(T), then
r $

(ff (s,v)92(dv))(ff (u ,t).41(du ))=0, for every (s,t)eA, 4.1 X9 2 a.e. Define
0 0

$ 1

A =((s,t)eA, Jf (u,t)P.l(du)---O], A 2=((s,t )EA, Jf (s,v)p2(dv)--O,
0 0

N =(A IUA 2 )c n A.

Iv£
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Notice that ( 2x2)(N)--0, and if (s ,t)0 A 1, for any s'. s such that (s',t)e A we have (s',t)e A

(and also an analogue property for A 2). Using Fubini's theorem we obtain [M II(A 1)=[M I(A 2)=0, and

consequently [M I(A )--0. [

The hypothesis on [M I in the preceding Proposition is obviously satisfied if for any A E B (T) such

that [M](A ) 0, there exists a rectangle R cA such that [M](R )*O.

Corollary 4.2. Let M E m 4 be a path independent martingale satisfying the hypothesis of Proposition 4.1,

then [M]<<[M .

Proof. Use Proposition 2.3.

Notice that we cannot expect [MI * [M I << [M ], a.s. Example 2.1 provides a counterexample.

The second part of this Section gives a partial result on the absolute continuity of [MIl with respect to

[M] * [M].

Lemma 4.3. Let f : T -+R be a bounded function, and F: T -R a continuous distribution function.

We have

lim I f(si,tj)[F(Ai})F(Ai )-(F *F)(Aiy)] 1--0

Proof. In order to simplify the notations we take z =1. Let m n; given a point (si ,tj )e pf, we define

1'=-{(',j '), (0 ,, Cj , )e pm r) [(Si,tj), (si , , tj + 1) ) }. By Lemma 2.1. we have

] I . f (5i ,tj )F (Ai )F (Aij. (F * F )(Aij )] I

I i,

= I f (si,tj)[F(Ai))F(Ai )- lim F(A, ,)F(AA,)I•ij I 1 m 4 (i ,I ) I ' (7)

< sup ( IEfi,[( Y F (A ) Y F (A) Y F i ) IM n ij 1j [ )'ejs 0(i l') i7

where flj =f (si ,tj ), and we have used the notations of Proposition 2.3.
-2e , ,and Ai,=Ailby Ak -A-' i.andA 2  respectively. Taking

account of this decomposition we obtain that (7) is bounded by sup (CE,,, +P,,n +f'mn ), where
man
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iJ (i',')e17

£4i (i',j')e I,

Y.. = 'f i Y, F (1Aij, )F(. .I
,,J (' .ji) 17

We next prove that each one of these terms tends to zero when n -oo, uniformly in m

<C Tf(Aij)FA 1 )<C sup IF(z 2)-F(z)IF(z) - 0
ii I Z --Z I 15 p, I n --P-

In an analogue way, sup 0 - 0. Finally
m n n-

<C sup IF(z 2)-F(z1 )IF(z) --+ 0
i~j I ZZ-Z 115 1 ,1  n--

Proposition 4.4. Assume that <M, >dr and <M.t >ds ae absolutely continuous, a.s., with respect to

[M ]sdt and [Ml ],J, and that there exist versions of their Radon-Nykodim derivatives l(S ,t ), 02(s ,t)

which are jointly continuous, a.s. Then [i7« << [M ] * [M ], a.s., and

[Al5t = fO1(x,y)0 2(xy)d([M]*[M])(x,y) ,a.s.
R,

Proof. Take z =(1, 1). By Proposition 2.3 and the hypothesis on absolute continuity we have

[Al]1, l = urn J(<M,.>ti.1 - <M,.>t1 )(<M.,J >'i, - <M.tj>,.)

f). 1  
3
i.1

= lim J( f OI(si,v)[MI],,dv)( f 0(u,tj)[M]dt) (8)
1 • j , tj si

= urn O1(s,tj)42(s ,tj)[M](AA)[MI(A5)

where the last equality follows from the continuity of 0 1,42 and [M I in its two variables. Using Lemma

4.3, we obtain that (8) is equal to

lim Zi(si ,tj )42 (si ,tj )([M I * [M ])(Aij)
n i

="("2)(x Y )d ([M],[M])(xy).
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5. Application to Local Time

We have pointed out in the Introduction that one of the motivations of this work has been the prob-

lem of finding out what measure is the most "natural" for the purpose of defining local time for two-

parameter continuous martingales. This Section is devoted to giving an answer to this question.

We start introducing some terminology. Let (x,, t E T ) be a real valued stochastic process defined

on a probability space (,Fj, ). Let Tbe a (Y-field on T, and ' a finite (possibly random) measure.

Following (4], a map L : Q]XRxT-R is called a local time for x with respect to r if the follow-

ing conditions hold:

(i) ForeachA = T, thefunction (wx)-L(w,x,A ) is F 0 B(R) measurable.

(ii) For every (w ,x )r xR, the function A -L (w ,x A ) is a finite measure on T

(iii) For almost every w, we have

ff ()L (wxA )dx = Jf (x,),(ds) (9)
R A

for each f : R-+R bounded, Borel function, and every A e T.

In the following we will omit the dependence of L on w, for the sake of simplicity.

Lemma 5.1. For almost every w, we have

f O(x,u)L (x,du)dx =f O(x,u )(du) (10)
ExT T

for any 0: RxT -+R measurable and bounded function.

Proof. Let O(x ,u )=f (x) 1A (u), where f : R-iR is measurable and bounded, and A E T; then

ff (xu) lA (u)T(du) = ff (x)L (xA )dx
T R

Jf(x)lA(u)L(x,du)dx
R xT

The general case follows by a monotone class argument. 13

Remarks.

(1) The equality (10) also holds for 0: RxT-R measurable and positive.
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(2) The property (9) means that the distribution function of L (x ,' is the density, with respect to the

Lebesgue measure of the -t-measure of sojourn time of the process x on Borel sets.

The following Proposition is an easy consequence of the definition of local time.

Lemma 5.2. Let T1,'C2 be two finite measures on the parameter space (T,'T). Assume that the local time

of x with respect to T2 exists, and denote it by L 2, then we have:

t 1 <<T2 as., and -(U) = O(u ) a.e. if and only if. for any X a.e. (with respect to the Lebesgue meas-
d r2

ure on R) there exist the local time ofx with respect to Th,L 1, and

L l(xA) =fO((u )L2(x ,du) ,a.s. (1

A

Proof. By Lemma 5.1 we have

fJ(U )T2(du) = f 0(u )L 2(x ,du )dx ,a.s.
T RxT

In order to see that (11) defines the local time of x with respect to TI, takef • R--R measurable

and bounded. Then

ff (x)L (x,A)dx = f f (x)O(u)L2(x,du)dx
it RxA

= ff (x. )(u )T2(du) ,by Lemma 5.1
A

= ff (x,,)?(du) .a.s.
A

Reciprocally,

"ci(A) = fL (x A)dr = f 0(u)L 2(x,du)dX = f (u) 2(du) ,a.s.
R RxA A

and therefore T I<< 2, a.s.

For any martingale Memc4 there are two non-trivial measures, [MI and[,, associated in a

natural way (see e.g. [21, [31. [8] ). Using an [to's formula for two-parameter continuous martingales,

Nualart has proved the existence of a local time for M with respect to [i. On the other hand there exist

several results on the existence of a local time for M with respect to [M] (see e.g. [12], [11 for the

Brownian sheet, and [ 11 for a certain class of martingales).

f
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Example 2.2. shows the existence of a non-zero continuous martingale such that M--. In view of

this example it seems that [I may not be a "good" measure in order to describe the time expended by M

on a certain set. Looking at example 2.1., an analogue conclusion can be obtained for the measure [M].

These considerations lead us to propose [M ]+[MF] as a natural measure to define the local time of

M. We will give the precise definition, and discuss the different role of [M ] and [Al].

Theorem 2.1 of [9] (see also (3]) establishes the following Ito formula: Iff : R--R is a C 4-class

function, and M E mc4, then for any (s ,t )e R.t we have

f (M4)-f (0) = f '(M, )dM, + f f "(M, )dM2 z + -f "(Ma )d <M.1 >,
Rt R,2 0

2 ,, " d Y ff "(M,)d[M 1 - f ...(M_)d[Mck (12)0 2 f  My) M >-" R,, R.

-±ff r:Mz )d[AtfZ
4 RJ

By means of this formula the existence of a process (L 1(x ,s ,t), x e R, (s ,t)e R 2) can be proved,

such that it is jointly continuous in (x ,s ,t), increasing in the sense of the measure, and for almost every w

f f (M)d [M = fL(xS,t) f (x)dx (13)
R, IR

for all bounded and Borel functions f , and every (s ,t )E R. (See theorem 3.2 of [9]).

The idea of the proof is the same as in the one-parameter case: Apply (12) to a function g , of class

C 4 and compact support, such that it is an approximation of - [,x+Fj(). It can be checked that

Ll(XSj) = lim f I l(, .+E} d [M4Z
E--+0 C R,.

exists, in the sense of the convergence in probability, and that (13) is satisfied.

In the terminology introduced at the beginning of the Section L, is the distribution function of the

local time of M with respect to [Ii.

Notice that, on the set (w, [Mifst (w)--O}, L 1(x,s,t) should be zero. Since there exist mar-

tingales such that [f -=O, but [M ]*0, this shows that the time spent by M on a certain set may be not

detected by the measure [MI] although it can be detected by [M]. Therefore, it is important to have a
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local time with respect to [M 1, say L 2. and a "good" combination ofL I and L 2 will provide a reasonable

measure of the sojourn time of the martingale on Borel sets.

Unfortunately, we do not have a general result on the existence of L 2 for any Mr mc , however we

know that it exists and has favorable properties for several classes of martingales (cf. references given

before).

Fix (s,t)eT. On the set (w, [M](w)=O}, L 2(x,u,v),(u,v)eR a can be obtained from

Ito's formula using the same approach of [9]. Indeed, using Lemma 3.1 and the local property of the sto-

chastic integral, we get from (12)

1 
s

[f(Ma)-f (0)]1{[(A.=) -- ff'(M ,) z + - Yf"(Mt)d<M.t >
0

ff "(-. - f "(M)dg[M }z 1 ([A. -0)

Fix E>0 and x e R and consider a C 2 -function with compact support such that g ¢ is an approximation

of __1 [xJ+E](). Then it can be shown that, in the sense of the convergence in probability,

li m I + diM1 ., +[fi.=L (x,s ,t) exists and
E -+-0 E R.

L (x j,t) = 1-2(Mg,-x) + + 2(-x)+ + 2f Iu. >x idgz
R,

s f+limE. I[f l (,SM .!r. +E d < M t, >u +f l fx emg +eld < M s .>Y ] } ' l l  --  (14)

=-2(M,,-x) +2(-x)++2 f l{M,>}dMz+L(l)(Xs,t) L(2)(Y,S,t)}' l,,-o}
R,

where L(l)(,), L 2 (y,s,) are the local times of the one-parameter martingales M.=(Mst, s .O)

and M5 =M,, t-2O},respectively.

Moreover, L 2 satisfies the "density of occupation" formula

(Jf(Mz)d[IM1z). 1([ 3 =(fL 2 (x ,s,t)f (x)dx) il[,loI ,a.s.
R
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Definition 5.3. The local time of a martingale Me mca is the process {L (x s t). xe R, (s .t )e T}

given by

L (x,s,t) = [L(xs,t) +L 2 (x,s,t)] • 1 ([141 >01 +L 2 (x,s,t) .

Notice that L is a local time with respect to the measure "T=[M ]+[1,.

To summarize:

(1) If [M ] << [ATlI, a.s., there exists the local time L with respect to [M ]+[M1], and it can be expressed

in terms ofL 1 (cf. Lemma 5.2).

(2) Assume [M ],4 [Ail], a.s. On the set { [M1]s, --0}, L always exists and is given by (14). On the set

[AMst >0), we know that L exists for a class of martingales on m 4 (see [11]), but we do not

know about its existence in general.

We end this Section with an application of local time to an example of two-parameter continuous

martingale for which the measures [M ], [Al] and [MI * [M ] are equivalent, a.s.

Example. Let m =m s , s 0}, n ={ nt , t>0} be two independent continuous martingales, bounded in

L2, with respect to some filtrations {Fs', S>01, (Ft2 , t>0 respectively. Consider the martingale

M={Mst=ms nt , s,t>0) with respect to the product fitration Fst=Fs' V t2. Denote by

L(1)(x ,s ), L(2)(y ,t) the local times of m and n with respect to their respective quadratic variations

<m >,<n >. We have [M] = [M,], a.s.

Indeed, for any A e B (R 2),

[1A](A)= a(S,f)mS2n,2d <m >sd<n >1

= f (J lA (s,t)mS 2d <m >s)nt2d <n >,
R. R.

= f ( f 1A(s,t)x 2L( 1)(x,ds)dx)n,2d<n>t by (10)
R. RxR.

=. f lA(S,t)X2y2 L (1)(X,ds)L(2)(y,d)ddy

By analogue computations

r. .. ..
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[MJ(A)= J J 1(s,t)L(')(x,ds)L (y,dt)dxdy
R' R!

and consequently the equivalence between [M] and [M.The equivalence between [Iand [MI [MI

is immediate.
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